How to Create Amorphous PET in a DSC –
The Importance of Fast Cooling Rates

Claire Strasser

Introduction
PET is a semi-crystalline thermoplastic polymer. The amorphous phase can recrystallize during heating: The polymer chains of the amorphous phase start to move as soon as a temperature above the glass transition temperature is reached, and they can then reorganize themselves in a crystalline structure. This so-called post-crystallization depends on the proportion of the amorphous phase in the polymer and can be investigated by means of DSC.

Test Conditions
A small 2.86-mg piece of a commercial plastic water bottle was measured in a Concavus pan. The NETZSCH DSC 214 Polyma was used to heat the sample to 300°C and cool it at 200 K/min. After that, the polymer was heated to 300°C again, at 10 K/min.

Test Results
This second heating is depicted in figure 1. The endothermic step detected at 78.8°C (mid-point) can be attributed to the glass transition of PET. The two peaks found between 130°C and 260°C result from post-crystallization and melting of the polymer, respectively. The two peak areas are identical (35 J/g).

This shows that the PET sample was completely amorphous following the fast cooling. Part of the amorphous content crystallizes during heating and ultimately melts completely at higher temperatures.