Thermal Diffusivity of Extremely Thin Polymer Films

Fabia Beckstein

Introduction

Determination of the thermal conductivity of thin polymer films by means of the laser flash method is mainly limited by two factors:

- Sample thickness: Related to this are very short measurement times
- Scattered light of the flash lamp: Due to the small mass, the sample is not ideally located in the sample holder

A solution to this offers the LFA 467 HyperFlash® (see figure 1). Due to its high data acquisition rate of 2 MHz, a short pulse time (up to 20 µs) and a special sample holder for thin samples (see figure 2), measurements on samples with a small thickness can simply and quickly be realized.

Measurement Conditions

An approximately 20 µm-thick polymer film was measured by means of the LFA 467 HyperFlash® between -40°C and 140 °C. In order to obtain an opaque sample, gold was sputtered onto the film prior to the measurement. Using graphite as a coating material is not recommended for such thin samples since it might influence the measurement results. More information on the optimal coating of samples can be found under [1].
For determination of the specific heat capacity of very thin samples, a DSC measurement is recommended. Along with the density data, the thermal conductivity can then also be determined.

Literature

[1] Application Note 066: When and How Must Samples Be coated During LFA Measurements?