Prototype Sandia Octahedral Molecular Sieve (SOMS)
Na$_2$Nb$_2$O$_6$$\cdotH_2$O: Synthesis, Structure and
Thermodynamic Stability

Hongwu Xu,*† May Nyman,‡ Tina M. Nenoff,‡ and Alexandra Navrotsky†

Thermochemistry Facility and NEAT ORU, University of California at Davis,
Davis, California 95616 and Sandia National Laboratories, P.O. Box 5800, M.S. 0755,
Albuquerque, New Mexico 87185

Received October 24, 2003. Revised Manuscript Received March 3, 2004

A new microporous phase Na$_2$Nb$_2$O$_6$$\cdotH_2$O, which transforms to NaNbO$_3$ perovskite on
heating, has been synthesized by the hydrothermal method. Rietveld analysis of powder
synchrotron X-ray diffraction data reveals that the structure comprises a framework of [NbO$_6$]
and [NaO$_6$] octahedra with other Na$^+$ being located in the channels (space group C2/c, a =
17.0511(9) Å, b = 5.0293(2) Å, c = 16.4921(6) Å, β = 113.9422(2)). This phase belongs to the
recently synthesized Sandia octahedral molecular sieves (SOMS) family, Na$_2$Nb$_{2-x}$M$_{x}$O$_6$$\cdotH_2$O
(M = Ti, Zr) and is the archetype for the substituted structures. Using drop-
solution calorimetry into molten 3Na$_2$O-4MoO$_3$ at 974 K, the enthalpies of formation of Na$_2$
Nb$_2$O$_6$$\cdotH_2$O from the constituent oxides and from the elements have been determined to be
-295.4 ± 4.8 and -2895.5 ± 6.4 kJ/mol, respectively. From the drop-solution calorimetric
data for Na$_2$Nb$_2$O$_6$$\cdotH_2$O and its dehydrated perovskite phase, the enthalpy of the dehydration
reaction, Na$_2$Nb$_2$O$_6$$\cdotH_2$O \rightarrow 2NaNbO$_3$ + H$_2$O, has been derived, and its implications for phase
stability are discussed.