Heat capacity of α-GaN: Isotope effects

R. K. Kremer,* M. Cardona, and E. Schmitt
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

J. Blum
NETZSCH-Geratebau GmbH, D-93040 Selb, Germany

S. K. Estreicher and M. Sanati
Physics Department, Texas Tech University, Lubbock, Texas 79409-1051, USA

M. Bockowski, I. Grzegory, and T. Suski
Institute of High Pressure Physics, Polish Academy of Sciences, ulica Sokolowska, 01-142 Warszawa, Poland

A. Jezowski
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ulica Okolna, 50-422 Wroclaw, Poland

(Received 21 March 2005; published 16 August 2005)

Until recently, the heat capacity of GaN had only been measured for polycrystalline powder samples. Semiempirical as well as first-principles calculations have appeared within the past few years. We present in this article measurements of the heat capacity of hexagonal single crystals of GaN in the 20–1400 K temperature range. We find that our data deviate significantly from the literature values for polycrystalline materials. The dependence of the heat capacity on the isotopic mass has also been investigated recently for monatomic crystals such as diamond, silicon, and germanium. Multatomic crystals are expected to exhibit a different dependence of these heat capacities on the masses of each of the isotopes present. These effects have not been investigated in the past to our knowledge. We also present first-principles calculations of the dependence of the heat capacities of GaN, as a canonical binary material, on each of the Ga and N masses. We show that they are indeed different, as expected from the fact that the Ga mass affects mainly the acoustic, that of N the optic phonons. It is hoped that these calculations will encourage experimental measurements of the dependence of the heat capacity on isotopic masses in binary and more complex semiconductors.

DOI: 10.1103/PhysRevB.72.075209

PACS number(s): 65.40.—b, 63.20.Dj, 65.40.Ba