INCONEL 738

Inconel alloys are a family of non-magnetic nickel-based superalloys. Inconel alloy 738 is 60% nickel, 16% chromium, and 8.5% cobalt and other metals such as aluminum or titanium or tungsten in lower concentrations. The high chromium content of Inconel 738 raises its oxidation resistance considerably above that of pure nickel, while its high nickel content provides good corrosion resistance under reducing conditions. Thus, it is often used under extreme conditions, such as aircraft engine parts, in turbine blades of gas power plants, turbocharger turbine wheels, chemical processing and pressure vessels.

Results

Presented in the plot is the measured specific heat-flow rate of Inconel 738 alloy. Between 559 and 609°C, an endothermic step can be seen. This step can be explained by the formation of Ni3Cr clusters causing an additional contribution to the specific heat (Richter and Born, 2004). At 834°C (extrapolated onset), a further endothermic phase transition was obtained. Melting was measured at 1285°C (extrapolated onset). The heat of fusion was 196 J/g.